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Abstract

The LandeÂ g factor characterizes the Zeeman effect, caused by the interaction of the magnetic moment of an atom and an

external magnetic ®eld. This factor is largely unaffected by correlation but depends strongly on the mixing of terms. In this

paper the LandeÂ g factors for the 2p4(3P)3p and 2p4(3P)3d terms of Ne II are reported, computed from multicon®guration

Dirac±Fock and multicon®guration Hartree±Fock plus Breit±Pauli wave functions. Extensive term mixing is present for some

of the terms of 2p4(3P)3d. It is shown how the gJ factor, which provides coupling information, can be used to identify MCDF

wave functions. q 2001 Elsevier Science B.V. All rights reserved.

Keywords: LandeÂ g factor; Zeeman effect; Multicon®guration Dirac±Fock; Multicon®guration Hartree±Fock 1 Breit±Pauli

1. Introduction

The Handbook of Atomic Data, published by

Fraga et al. [1], reports many atomic properties

based on a Dirac±Fock±Breit±Pauli±Hartree±Fock

method. Included in the book are LandeÂ g factors of

a few levels, but not many. The g factors are asso-

ciated with the Zeeman effect and determine energy

splittings in an external magnetic ®eld. Unlike many

other atomic properties, they are not as affected by

correlation as by term mixing. In this paper, we

explore the determination of LandeÂ g factors in both

the intermediate coupling multicon®guration

Hartree±Fock Breit±Pauli approximation and the

multicon®guration Dirac±Fock±Breit approximation.

For convenience we will refer to these simply as

MCHF and MCDF, respectively. Our investigation

is restricted to the 2p4(3P)3p and 2p4(3P)3d states

of Ne II, a system investigated recently in both

methodologies for the purpose of the study of trans-

ition rates. Extensive term-mixing was found, particu-

larly for the 2p4(3P)3d even states [2]. It is suggested

that the g factor may be used in labeling of states

computed in the multicon®guration Dirac±Fock±

Breit formalism.

2. Theory

In the non-relativistic MCHF approach [3,4], the

wave function c for a state labeled gLS, where g
represents the con®guration and any other quantum

numbers required to specify the state, is expanded in

terms of con®guration state functions (CSFs) with the

same LS term,

c�gLS� �
X

j

cjF �gjLS�: �1�

The con®guration state functions F (gLS) are anti-

symmetrized linear combinations of products of
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spin-orbitals

fnlmlms
� 1

r
Pnl�r�Ylml

�u;w�jms
�s�; �2�

where the radial functions Pnl(r) are represented by

their numerical values on a logarithmic grid,

Ylml
�u;w� is a spherical harmonic, and jms

�s� a spin-

function. The radial functions are required to be

orthonormal within each l symmetry. The multicon-

®guration self-consistent ®eld (MC-SCF) procedure is

used to optimize both the orbitals and the expansion

coef®cients to self-consistency.

Once a set of radial functions has been obtained, a

Breit±Pauli con®guration interaction (CI) calculation

can be performed where the wave function is

expanded in LSJ coupled con®guration state functions

c�gLSJ� �
X

j

cjF �gjLjSjJ�: �3�

Now only the expansion coef®cients are to be deter-

mined. This is done by diagonalizing the Hamiltonian

matrix with respect to the Breit±Pauli operator, which

includes the most important, lowest-order corrections

of the Dirac±Coulomb±Breit operator [4]. All MCHF

calculations used the MCHF atomic structure package

[3], modi®ed for large-scale computation. This is the

intermediate coupling or LSJ approximation.

In the MCDF approach [5], the wave function c for

a state labeled gJ, where g represents the con®gura-

tion and any other quantum numbers required to

specify the state, is approximated by an expansion

over jj coupled con®guration state functions

C�gJ� �
X

j

cjF �g jJ�: �4�

The con®guration state functions F (gJ) are anti-

symmetrized linear combinations of products of rela-

tivistic orbitals

fnkm � 1

r

Pnk�r�xkm�r̂�
iQnk�r�x2km�r̂�

 !
: �5�

Here k is the relativistic angular quantum number,

Pnk�r� and Qnk�r� are the large and small component

radial wave functions and xkm�r̂� is the spinor spheri-

cal harmonic in the lsj coupling scheme

xkm�r̂� �
X

ml;ms

kl 1
2

mlmsu jmlYlml
�u;w�jms

�s�: �6�

As for MCHF the radial functions Pnk�r� and Qnk�r�
are represented on a logarithmic grid and are required

to be orthonormal within each k symmetry. In the

multicon®guration self-consistent ®eld procedure

both the radial functions and the expansion coef®-

cients for the con®guration state functions are opti-

mized to self-consistency under additional conditions

on the large and small component radial functions at

the vicinity of the nucleus to avoid collapse into the

negative energy continuum [6].

Once a set of radial orbitals has been obtained,

relativistic con®guration interaction (RCI) calcula-

tions can be performed. Here the transverse photon

interaction

Htrans�

2
XN
i,j

"
ai´aj cos�vijrij�

rij

1 �ai´7i��aj´7j�
cos�vijrij�2 1

v 2
ij rij

#
�7�

may be included in the Hamiltonian. The photon

frequency vij used by the RCI program in calculating

the matrix elements of the transverse photon interac-

tion is taken to be the difference in the diagonal

Lagrange multipliers ei and ej associated with the

orbitals. In general, diagonal Lagrange multipliers

are approximate electron removal energies only

when orbitals are spectroscopic and singly occupied.

Thus it is not known how well the code can determine

the full transverse photon interaction when correlation

orbitals are present. What can be obtained instead is

the low frequency limit vij ! 0 usually referred to as

the Breit interaction.

3. Method of computation

In both cases we used systematic, large-scale meth-

ods where expansions are obtained from rules for

distributions of electrons to orbitals, and orbital sets

are allowed to grow in size.

In many respects, the MCDF calculations are

conceptually the more straightforward. The results

are totally ab initio: relativistic effects are included

directly, but because of the jj coupling, there are

about twice as many orbitals and expansions growing

so rapidly that not nearly as much correlation can be

included. On the other hand, the MCDF codes [7,8]
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have been modi®ed to deal with independent J-blocks

and orbitals can be optimized simultaneously on a

number of different levels. In all cases, the expansions

were over the CSFs from the distribution

1s2{2}5{2; 3;¼; n}2
; where n is the maximum princi-

pal quantum number of the orbital set, but with n # 5:

The distribution denotes all possible con®guration

states with a ®lled 1s2 core, followed by ®ve orbitals

that are either 2s, 2p1 or 2p2, with the remaining two

orbitals restricted to the orbital set as determined by

the largest principal quantum number n. The latter

parameter characterizes the orbital set. A set of 1s,

2s, 2p1, 2p2 orbitals, both for the odd and the even

parity states, was obtained from an extended optimal

level MCDF calculation for 2s22p43P0,1,2, optimizing

simultaneously on all three levels. Then, as new orbi-

tals were included successively for n � 3; n � 4; and

n � 5 orbital sets, only the new orbitals were varied.

Details of the optimization procedure and the result-

ing spectrum can be found in Ref. [2].

The MCHF method with Breit±Pauli corrections is

quite different. In fact it is not unlike a basis set

method where the variational calculations determine

a set of orbitals that must simultaneously describe the

levels of particular interest. In the case of 2p4(3P)3p

the possible terms are 4D, 4P, 4S, 2D, 2P, and 2S. In the

present work, the lower lying 2p5 2P is not of interest

and need not be optimized. In this work, the optimiza-

tion process was somewhat arbitrary and did not use

the simultaneous optimization scheme developed

later, speci®cally for such cases where an orbital

basis is optimized simultaneously on selected terms

and even selected eigenvalues [9]. The ®nal expansion

for each term was then generated as the union of

the two distributions, 1s2{2}4{2,3}{2,3,4}2 and

1s2{2}5{2,3,4,5,6}2. Note that more correlation is

included with this approach, not only because the

largest orbital sets included those with n � 6; but

also because the ®rst distribution included more exci-

tations.

For 2p4(3P)3d the set of possible terms of interest

are 4F, 4D, 4P, 2F, 2D, and 2P. In addition to the lower-

lying 2s2p6 2S term, there are all the 2p43s terms

which will interact with the levels of interest. Though

they need not be carefully optimized, they should be

well enough represented in the basis to reproduce the

spectrum. Again, the details of optimization can be

found elsewhere [2]. Expansions were obtained for

each term of interest along with 2G and 2S, which

have J-values in common with these terms. These

were then combined in Breit±Pauli calculations for

the different J-values.

In a Breit±Pauli calculation, the accuracy of a wave

function can be enhanced considerably by shifting the

diagonal LS energies for each block. In the odd parity

case, the critical J-value was the J � 3=2: To bring

these J � 3=2 levels into agreement with observation,

as tabulated by Persson [10], the diagonal LS energies

were adjusted. These shifts were determined after a

Breit±Pauli calculation was performed without any

adjustments and then compared with observation.

Not only did the shifts improve the separation

between levels, they also brought the levels into posi-

tion relative to the energy of the ground state. For the

even-parity case, at ®rst it seemed appropriate to

adjust the diagonals for the most critical J � 3=2

levels, or J � 5=2 for 2F. However, such an adjust-

ment process assumes the labels assigned by Persson

[10] are correct. Instead, it was decided to shift the

blocks by choosing J values for which mixing would

not be strong, thereby determining the appropriate

labeling. The results suggested that the levels desig-

nated by Persson as 4F7/2 and 2F7/2 should be reversed

[2].

Once the wave functions have been determined,

various properties can be determined, including the

LandeÂ g factor that is connected with the Zeeman

effect.

4. Zeeman effect

The Zeeman effect is caused by the interaction

between the magnetic moment of the atom and an

external magnetic ®eld. The operator representing

this interaction is

Hm � 2m´B; �8�
where m is the magnetic moment and B the magnetic

®eld. In the Breit±Pauli approximation there are two

contributions to the magnetic moment; one from the

orbital motions and the other from the spin motions of

the electrons. Adding these two contributions we have

m � 2mB�L 1 gsS�; �9�
where mB is the Bohr magneton and gs � 2:00232, the
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g factor of the spin corrected for quantum electrody-

namic (QED) effects.

If the external ®eld is weak such that the magnetic

interaction energy is small compared to the ®ne-

structure separations, Hm can be treated in ®rst-

order perturbation theory with wave functions from

the Breit±Pauli Hamiltonian as zero-order functions.

Choosing the direction of the external ®eld as the

z-direction, the operator for the interaction can be

written

Hm � mBB�Lz 1 gsSz�; �10�
and the energy level gJ is split according to

DE�gJMJ� � kgJMJ uHmugJMJl

� mBBkgJMJ uLz 1 gsSzugJMJl: �11�
In the multicon®guration Breit±Pauli approximation

this becomes

DE�gJMJ� � mBB
X
j;k

cjckkF �gjLjSjJMJ�uLz

1 gsSzuF �gkLkSkJMJ�l: �12�
The matrix elements between the CSFs are readily

evaluated to yield

kF �gLSJMJ�uLz 1 gsSzuF �g 0L 0S 0JMJ�l
� dgg 0dLL 0dSS 0gJ

�LS�MJ ; �13�
where

gJ�LS� � 1 1 �gs 2 1� J�J 1 1�1 S�S 1 1�2 L�L 1 1�
2J�J 1 1�

�14�
is the LandeÂ g factor without any term mixing, i.e. in

pure LS coupling. Summing up, the energy splitting

can now be written

DE�gJMJ� � gJ�LSJ�mBBMJ ; �15�
where

gJ�LSJ� �
X

j

c 2
j gJ�LjSj� �16�

is the LandeÂ g factor in intermediate coupling. In

theoretical studies this quantity can be used as a valu-

able probe of the coupling conditions in the atom.

Since the energy splitting is proportional to MJ the

operator HM can be replaced with

HM � gJ�LSJ�mBJ´B: �17�
This equivalent operator establishes the connection

with the fully relativistic case. In the relativistic

theory the interaction with the magnetic ®eld is

given by

Hm �
XN
j�1

aj´
1
2

B £ rj

� �
: �18�

The interaction can also be written as a scalar product

Hm � 1
2

N´B; �19�
where

N�1�q � 2
XN
j�1

i

�����
8p

3

r
rjaj´Y

�0�
1q �r̂j� �20�

is an operator of the same tensorial form as the

magnetic dipole hyper®ne operator [11]. Expressing

the operator HM in the equivalent form

Hm � gJ�jj�mBJ´B �21�
and using the projection theorem gives the LandeÂ g

factor in jj coupling

gJ�jj� � 1

2mB

kgJJiN�1�igJJl���������������������
J�J 1 1��2J 1 1�p : �22�

In the relativistic Dirac theory the electron g factor is

exactly 2. The QED corrections to this factor leads to

a correction of the interaction operator

DHm � �gs 2 2�
2

mBbS´B; �23�

where S is the relativistic spin matrix. De®ning the

operator DN by

DN �1�q �
XN
j�1

bjSqj �24�

then the correction to the LandeÂ g factor is given by

(see Ref. [11] for details)

DgJ� jj� � �gs 2 2�
2

kgJJiDN �1�igJJl���������������������
J�J 1 1��2J 1 1�p : �25�

The evaluation of the matrix elements in jj coupling

was done by a modi®ed version of the hyper®ne
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structure program [12] belonging to the MCDF

program package.

5. Results

Tables 1 and 2 show the g factor computed in differ-

ent ways: gJ�LS� is the single term value, gJ�LSJ� is

the intermediate coupling value, and gJ� jj� is the QED

corrected value as determined from a multicon®gura-

tion Dirac±Fock±Breit calculation.

In order to interpret these results we present, in

Table 3, the term mixing of the states of interest, in

the Breit±Pauli approximation.

For the 2p4(3P)3p states the mixing of terms is rela-

tively small, the largest occurring for 2P0
1=2: This is

also the state where term mixing has produced the

largest change in the gJ factor. It also needs to be

pointed out that whereas g1/2(
4D) is negative, the

small admixture of other J � 1=2 states has produced

a positive LandeÂ factor.

The situation for 2p4(3P)3d states is somewhat

different. On the whole, there is excellent agreement

between the intermediate coupling and MCDF gJ

values, even when term mixing has resulted in a

signi®cant difference with gJ�LS�: But some discre-

pancies are observed. An example can be found in
2F5/2 and 4P5/2. These terms are relatively close to

each other, being separated by only 145.44 cm21 in

the observed spectrum. The MCDF separation was

138.44 cm21, whereas the MCHF Breit±Pauli separa-

tion was 252.63 cm21. In this case, we expected

MCDF transition rates from these levels to be the

more accurate, yet the agreement in the gJ values is

good. But there is another interesting situation: 4F3/2

and 4P3/2. In this case, the separation is 42.43, 53.91,

and 51.58 cm21, respectively, for observed, MCDF,

and intermediate coupling Breit±Pauli. In classifying

the energy levels of the J � 3=2 states, the MCDF

states were assigned a label by order of their

computed energy, consistent with observed and with

Breit±Pauli values. A comparison of the gJ values

shows that the two states are interchanged if ordered

according to their gJ values.

Relabeling the MCDF wave function according to

the gJ value removes an anomaly found in the transi-

tion data [2]. Table 4 compares the MCDF and

MCHF 1 Breit±Pauli results, with the label of the

former interchanged. By no means is the agreement

excellent but now the two calculations have the same

dominant decay mechanism. Values of Ful give the

rate of decay of a transition rate relative to the largest

transition rate. For both methodologies the dominant

decay is 4P3=2 2 4S0
3=2 and 4F3=2 2 4D0

1=2 for the two

upper states, respectively.

Griesman et al. [13] have reported branching frac-

tions and transition probabilities for some of these

levels. In our earlier publication [2], some branching

ratios for decay from 4P3/2, using the energy ordered
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Table 1

Comparison of LandeÂ g factors for 2p4(3P)3p states of Ne II

Level gJ�LS� gJ�LSJ� gJ� jj�
4D0

7=2 1.42956542 1.42956541 1.42829857
4P0

5=2 1.60139158 1.59983083 1.59806312
4D0

5=2 1.37229003 1.36994419 1.36863839
2D0

5=2 1.20046386 1.20431663 1.20393627
4P0

3=2 1.73503416 1.73317402 1.73106887
4D0

3=2 1.20046386 1.19934977 1.19875118
2D0

3=2 0.79953614 0.80635674 0.80569633
4S0

3=2 2.00231930 2.00009455 1.99814034
2P0

3=2 1.33410643 1.33225344 1.33175896
4P0

1=2 2.67053217 2.66564528 2.66115147
4D0

1=2 20.00231930 0.00163534 0.00426238
2S0

1=2 2.00231930 1.93165792 1.96752766
2P0

1=2 0.66589357 0.73737916 0.69935731

Table 2

Comparison of LandeÂ g factors for 2p4(3P)3d states of Ne II

Level gJ�LS� gJ�LSJ� gJ� jj�
4F9/2 1.33410643 1.33405411 1.33312145
4D7/2 1.42956542 1.42130719 1.41954265
4F7/2 1.14318847 1.17752104 1.17693132
2F7/2 1.23864745 1.21246467 1.21249501
4D5/2 1.37229003 1.36852514 1.36735537
2D5/2 1.20046386 1.13139412 1.13159673
4F5/2 1.02863769 1.06474261 1.06987276
2F5/2 0.85681153 0.95599475 1.08781012
4P5/2 1.60139158 1.53883417 1.40175128
4D3/2 1.20046386 1.20352656 1.20344693
2D3/2 0.79953614 0.85208847 0.86740242
4F3/2 0.39860842 0.74977631 1.39391237
4P3/2 1.73503416 1.36136564 0.707083489
2P3/2 1.33410643 1.30088570 1.296989299
4D1/2 20.00231930 0.03875369 0.045329737
4P1/2 2.67053217 2.59146263 2.591722837
2P1/2 0.66589357 0.70380560 0.697122022



MCDF labels, were incorrectly compared with values

for 4F3/2. Table 5 reports the branching ratios for this

term, using the label from the gJ values for both

MCDF and MCHF 1 Breit±Pauli. Since the latter is

based on shifted energy values, the levels are in good

agreement with those observed. In the NIST column,

there is substantial disagreement with both MCDF and

MCHF for the decay to 4S0
3=2; a transition arising from

term mixing. Unlike some transitions which are spin-

forbidden, this one is ªLº (or angular) forbidden and,

intuitively, one would expect it not to be as large as

observed by Griesman et al. [13]. In the MCDF

column, there is a large branching factor to 4D0
3=2;

neither reproduced by MCHF calculations nor

observed in the experiment. As mentioned earlier,

the MCDF calculations did not include as much corre-

lation. In particular, correlation within 2p4 was

neglected. When levels of the same J are so closely

spaced, more correlation may be needed. In some

respects, the agreement between MCHF and observa-

tion is better.

6. Conclusions

The LandeÂ g factor is not as sensitive to correlation

within a term as to the mixing of terms. Thus it seems

to be a means of identifying an MCDF wave function,
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Table 3

Major Breit±Pauli contributions to the wave function expansion. Persson's term designation in used. Unless indicated otherwise, the 2p4 term of

the target is always 3P

State Contribution to the expansion

2p4(3P)3p
4P0

5=2 0.984 4P0

4P0
3=2 0.983 4P0

4P0
1=2 0.986 4P0

4D0
7=2 0.988 4D0

4D0
5=2 0.976 4D0 2.142 2D0

4D0
3=2 0.982 4D0

4D0
1=2 0.987 4D0

2D0
5=2 0.977 2D0 0.140 4D0

2D0
3=2 0.980 2D0

2S0
1=2 0.960 2S0 0.211 2P0

4S0
3=2 0.984 4S0

2P0
3=2 0.923 2P0 20.300 (1D)2P0

2P0
1=2 0.898 4P0 20.300 (1D)2P0 20.288 2S

2p4(3P)3d
4D7/2 0.968 4D 0.173 4F
4D5/2 0.962 4D 0.157 4F 0.151 4P
4D3/2 0.964 4D 0.161 4P 0.109 4F
4D1/2 0.975 4D 20.115 2P 0.108 4P
4F9/2 0.989 4F
4F7/2 0.792 2F 20.591 4F
2D5/2 0.815 2D 0.426 2F 20.320 4F 0.169 4P
2D3/2 0.868 2D 20.311 4F 0.249 2P 0.242 4P
2F7/2 0.774 4F 0.585 2F 20.192 4D
4P1/2 .970 4P .168 2P
4F5/2 0.850 4F 0.432 2D 20.209 2F 20.130 4D
4F3/2 0.832 4F 0.470 4P 0.156 2P 20.151 4D 0.135 2D
4P3/2 0.810 4P 20.418 4F 20.365 2D 20.114 4D
2F5/2 0.847 2F 0.356 4F 20.269 4P 20.243 2D
4P5/2 0.919 4P 20.258 2D 0.189 2F 20.167 4D
2P1/2 0.967 2P 20.156 4P 0.131 4D
2P3/2 0.942 2P 20.259 2D 20.126 4P
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Table 4

MCDF and MCHF transition energies (in cm21), transition rates (in s21), and relative branching factors. In the case of MCDF data, results in the

Coulomb (velocity) gauge are given above those of the Babushkin (length) gauge. Persson's labels are used

Upper level Lower level DE MCDF DE MCHF

Aul gf Ful Aul gf Ful

4P3/2
4S0

3=2 28288.0 1.367D108 1.0244 100.00 28045.0 1.004D108 0.7656 100.00

1.304D108 0.9770 100.00
4P0

5=2 34831.4 2.781D107 0.1374 20.34 34803.9 4.654D107 0.2304 46.35

2.999D107 0.1482 23.00
4P0

3=2 34612.4 1.633D106 0.0082 1.19 34584.1 7.009D106 0.0351 6.98

1.417D106 0.0071 1.09
4P0

1=2 34432.3 5.342D107 0.2702 39.08 34403.6 6.957D107 0.3525 69.28

5.858D107 0.2963 44.93
4D0

5=2 31740.8 1.641D107 0.0977 12.00 31545.8 2.296D105 0.0014 0.23

2.042D107 0.1215 15.66
4D0

3=2 31495.1 2.650D105 0.0016 0.19 31302.2 4.177D107 0.2557 41.60

9.013D104 0.0005 0.07
4D0

1=2 31353.5 9.818D107 0.5989 71.82 31160.4 2.475D107 0.1528 24.65

1.058D108 0.6452 81.12
2S0

1=2 28427.8 8.198D105 0.0061 0.60 28218.1 1.851D106 0.0139 1.84

8.004D105 0.0059 0.61
2P0

3=2 26364.0 4.607D104 0.0004 0.03 26830.2 4.944D106 0.0412 4.92

2.679D104 0.0002 0.02
2P0

1=2 26260.7 3.496D106 0.0304 2.56 26723.3 1.835D107 0.1541 18.28

3.037D106 0.0264 2.33
2D0

5=2 30218.5 1.110D105 0.0007 0.08 29978.7 1.253D106 0.0084 1.25

2.193D105 0.0014 0.17
2D0

3=2 29712.7 6.855D105 0.0047 0.50 29477.8 1.370D107 0.0945 13.64

7.385D105 0.0050 0.57

4F3=2
4S0

3=2 28341.9 3.196D107 0.2386 22.78 27993.4 3.585D107 0.2744 17.43

3.048D107 0.2276 20.65
4P0

5=2 34885.3 7.035D106 0.0347 5.01 34752.3 1.476D107 0.0733 7.18

7.623D106 0.0376 5.16
4P0

3=2 34666.3 1.086D106 0.0054 0.77 34532.5 1.074D106 0.0054 0.52

1.095D106 0.0055 0.74
4P0

1=2 34486.2 9.806D106 0.0494 6.99 34352.0 2.812D107 0.1429 13.67

1.058D107 0.0534 7.17
4D0

5=2 31794.7 4.065D101 0.0000 0.00 31494.2 6.084D106 0.0368 2.96

3.043D104 0.0002 0.02
4D0

3=2 31549.0 8.801D107 0.5303 62.73 31250.7 3.798D107 0.2332 18.46

9.597D107 0.5782 65.02
4D0

1=2 31407.4 1.403D108 0.8530 100.00 31108.8 2.057D108 1.2747 100.00

1.476D108 0.8973 100.00
2S0

1=2 28481.7 6.065D106 0.0448 4.32 28166.5 4.590D106 0.0347 2.23

5.692D106 0.0421 3.86
2P0

3=2 26417.9 9.619D106 0.0827 6.86 26778.6 3.296D106 0.0276 1.60

8.598D106 0.0739 5.83
2P0

1=2 26314.6 1.973D107 0.1709 14.06 26671.7 5.552D105 0.0047 0.27

1.737D107 0.1504 11.77
2D0

5=2 30272.4 3.274D106 0.0214 2.33 29927.1 1.378D106 0.0092 0.67

3.274D106 0.0214 2.22
2D0

3=2 29766.6 1.833D107 0.1241 1113.06 29426.3 2.957D106 0.0205 1.44

1.799D107 0.1218 12.19



when energy levels are closely spaced or observed

data is not available.
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Table 5

Comparison of relative branching factors: NIST [13], MCDF and

MCHF

Upper Lower NIST MCDF(C/B) MCHF

4F3/2
4S0

3=2 75.28 22.78/20.65 17.43
4P0

5=2 7.48 5.01/5.16 7.18
4P0

3=2 0.268 0.74/0.77 0.52
4P0

1=2 23.15 7.17/6.99 13.67
4D0

5=2 8.837 0.00/0.02 2.96
4D0

3=2 1.636 65.02/62.73 18.46
4D0

1=2 100.0 100.0/100.0 100.0
2S0

1=2 0.342 4.32/3.86 2.23
2P0

3=2 Not obs. 6.86/5.83 1.60
2P0

1=2 1.867 11.77/14.06 0.27
2D0

5=2 0.118 2.33/2.22 0.67
2D0

3=2 1.469 12.19/13.06 1.44


